142 research outputs found

    Testing Higher-Order Lagrangian Perturbation Theory Against Numerical Simulations - 1. Pancake Models

    Get PDF
    We present results showing an improvement of the accuracy of perturbation theory as applied to cosmological structure formation for a useful range of quasilinear scales. The Lagrangian theory of gravitational instability of an Einstein-de Sitter dust cosmogony investigated and solved up to the third order in the series of papers by Buchert (1989, 1992, 1993a), Buchert \& Ehlers (1993), Buchert (1993b), Ehlers \& Buchert (1993), is compared with numerical simulations. In this paper we study the dynamics of pancake models as a first step. In previous work (Coles \etal 1993, Melott \etal 1993, Melott 1993) the accuracy of several analytical approximations for the modeling of large-scale structure in the mildly non-linear regime was analyzed in the same way, allowing for direct comparison of the accuracy of various approximations. In particular, the ``Zel'dovich approximation'' (Zel'dovich 1970, 1973, hereafter ZA) as a subclass of the first-order Lagrangian perturbation solutions was found to provide an excellent approximation to the density field in the mildly non-linear regime (i.e. up to a linear r.m.s. density contrast of σ≈2\sigma \approx 2). The performance of ZA in hierarchical clustering models can be greatly improved by truncating the initial power spectrum (smoothing the initial data). We here explore whether this approximation can be further improved with higher-order corrections in the displacement mapping from homogeneity. We study a single pancake model (truncated power-spectrum with power-index n=−1n=-1) using cross-correlation statistics employed inComment: TeX, 18 pages excl.figures; contact [email protected] ; [email protected] . submitted to Astron. & Astrophy

    A Test of the Adhesion Approximation for Gravitational Clustering

    Get PDF
    We quantitatively compare a particle implementation of the adhesion approximation to fully non--linear, numerical nbody simulations. Our primary tool, cross--correlation of nbody simulations with the adhesion approximation, indicates good agreement, better than that found by the same test performed with the Zel'dovich approximation (hereafter ZA). However, the cross--correlation is not as good as that of the truncated Zel'dovich approximation (TZA), obtained by applying the Zel'dovich approximation after smoothing the initial density field with a Gaussian filter. We confirm that the adhesion approximation produces an excessively filamentary distribution. Relative to the nbody results, we also find that: (a) the power spectrum obtained from the adhesion approximation is more accurate than that from ZA or TZA, (b) the error in the phase angle of Fourier components is worse than that from TZA, and (c) the mass distribution function is more accurate than that from ZA or TZA. It appears that adhesion performs well statistically, but that TZA is more accurate dynamically, in the sense of moving mass to the right place. Subject Heading: Galaxies, formation, clustering--large--scale structure of the UniverseComment: TeX, 7 pages excluding figures (contact [email protected]). submitted to Ap

    The Bull's-Eye Effect as a Probe of Ω\Omega

    Full text link
    We compare the statistical properties of structures normal and transverse to the line of sight which appear in theoretical N-body simulations of structure formation, and seem also to be present in observational data from redshift surveys. We present a statistic which can quantify this effect in a conceptually different way from standard analyses of distortions of the power-spectrum or correlation function. From tests with NN--body experiments, we argue that this statistic represents a new and potentially powerful diagnostic of the cosmological density parameter, Ω0\Omega_0.Comment: Minor revisions; final version accepted for publication in ApJ Letters. Latex, 16 pages, including 3 figures. Higher resolution versions of figures, including supplementary figures not included in the manuscript, are available at: ftp://kusmos.phsx.ukans.edu/preprints/melott/omeg

    Scaling in Gravitational Clustering, 2D and 3D Dynamics

    Full text link
    Perturbation Theory (PT) applied to a cosmological density field with Gaussian initial fluctuations suggests a specific hierarchy for the correlation functions when the variance is small. In particular quantitative predictions have been made for the moments and the shape of the one-point probability distribution function (PDF) of the top-hat smoothed density. In this paper we perform a series of systematic checks of these predictions against N-body computations both in 2D and 3D with a wide range of featureless power spectra. In agreement with previous studies, we found that the reconstructed PDF-s work remarkably well down to very low probabilities, even when the variance approaches unity. Our results for 2D reproduce the features for the 3D dynamics. In particular we found that the PT predictions are more accurate for spectra with less power on small scales. The nonlinear regime has been explored with various tools, PDF-s, moments and Void Probability Function (VPF). These studies have been done with unprecedented dynamical range, especially for the 2D case, allowing in particular more robust determinations of the asymptotic behaviour of the VPF. We have also introduced a new method to determine the moments based on the factorial moments. Results using this method and taking into account the finite volume effects are presented.Comment: 13 pages, Latex file, 9 Postscript Figure
    • …
    corecore